Abstract

A combination of static and dynamic light scattering (SLS and DLS) is applied here to determine molecular parameters for coexisting linear and circular scleroglucan polymers of similar molecular weights, dissolved in water, that is, forming a ternary system. The weight-average molecular weights, M(w), were determined to be 3.2 x 10(5) and 3.9 x 10(5) g/mol for the circular and linear molecules, respectively, whereas the z-average radius of gyration, R(g), was found to be equal to 41 nm for the circular molecules and 136 nm for the linear ones. These values are within a physically reasonable range in view of the heterogeneity of the samples. This study confirms that decomposition of total scattering intensities deduced from the dynamic properties can be used to determine molecular parameters of populations of molecules of equal M(w) but different morphologies present in ternary mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.