Abstract

The precise measurement of internuclear distances in solids by NMR has been widely explored using experiments that measure the dipolar coupling between labeled spin pairs. The rotational-echo double-resonance (REDOR) experiment is one of the most successful techniques for quantifying distances between heteronuclei. In the present work, REDOR is applied to the precise determination of the angle between internuclear vectors in triply labeled spin systems. The time domain REDOR signal for two heteronuclear coupled spin pairs sharing a common partner (an I2S spin system) is derived and analyzed with the aid of dipolar transforms. A two-step experimental approach for the structural analysis of I2S spin systems is then developed. Independent θ-REDOR and traditional REDOR measurements are used to obtain the heteronuclear dipolar coupling constants and the angle between them. Demonstrations are carried out on labeled polycrystalline samples of glycine and uracil. The REDOR experiment is also examined using altern...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.