Abstract

Micro-machining has gained increased application to produce miniaturized parts in various industries. However, the uncut chip thickness in micro-machining is comparable to cutting edge radius. The relationship between the cutting edge radius and uncut chip thickness has been a subject matter of increasing interest. The acoustic emission (AE) signal can reflect the stress wave caused by the sudden release of the energy of the deformed materials. To improve the precision of machining system, determination of the minimum uncut chip thickness was investigated in this paper. The AE signal generated during micro-cutting experiments was used to analyze the chip formation in micro-end milling of Inconel 718. The finite element method (FEM) simulation was used to analyze the results of the experiments. The results showed that the cutting tool geometry and material properties affected the minimum uncut chip thickness. The estimation of the minimum uncut chip thickness based on AE signals can produce quite satisfactory results. The research on the minimum uncut chip thickness can provide theoretical basis for analysis of surface quality and optimal choice of cutting parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.