Abstract

A method for the confirmation and quantification of metformin hydrochloride and its relative substances melamine and dicyandiamide using tandem dual solid phase extraction (SPE) cartridges and high performance liquid chromatography-electrospray ionization multi-stage mass spectrometry (HPLC-ESI-MSn) was developed. The samples were extracted with anhydrous ethanol containing 0.1% (v/v) acetic acid under ultrasound-assisted conditions. The extracts were concentrated and purified using Cleanert PCX and C18 tandem dual solid phase extraction cartridges, and eluted with 5% (v/v) ammonia methanol solution. The separation was performed on a Kromasil-C18 column (100 mm×4.6 mm, 3.5 μm) with gradient elution. The detection was performed in selected ion monitoring (SIM) mode using electrospray ionization multi-stage mass spectrometry. The external standard method was used for quantification. The extraction solvents, types of SPE cartridges and eluents were optimized by comparing the recoveries under different conditions. The results showed that the detector response of each target compound was linear in corresponding mass concentration ranges with the correlation coefficients (r2) ≥ 0.9992. The limits of detection (LODs) and the limits of quantification (LOQs) of the three analytes were 1.48-13.61 μg/kg and 5.96-45.67 μg/kg, respectively. The recoveries of the three analytes were 65.02%-118.33% spiked at low, medium and high levels. The relative standard deviations (RSDs) were no more than 13.41%. The method is reliable, easy, and has a better purification effect. The method can be applied to the routine analysis of metformin hydrochloride and its relative substances melamine and dicyandiamide in different preparations of metformin hydrochloride.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.