Abstract
The optimisation of a micro-analytical two-step sequential leaching procedure for the determination of non-volatile ions (NO 3 −, SO 4 2−, Cl −, Na +, Mg 2+, NH 4 + and Ca 2+) and of 17 elements (Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, S, Se, V, Zn, Sb, Si and Ti) in two fractions—extract and residue—on the same sample of air particulate matter is described. The two-step method was tested on the SRM NIST 1648 for equivalence with two reference methods, the EMEP procedure for ions extraction and the EN 12341 standard for the elemental determination of the PM 10 and is suitable for application to small sample amounts (less than 1 mg of particulate matter is needed), i.e. those collected by daily low volume filter-sampling. Performance times of the procedure were optimised to meet the target of routine application for large scale monitoring samples. A single ultrasonic-assisted extraction of air particulate matter is performed in 0.01 M acetate buffer at pH 4.5, followed by IC ions analysis and ICP-OES elemental analysis of the extract and by ICP-OES elemental analysis of the mineralized residue after dissolution by microwave-assisted digestion with a HNO 3/H 2O 2 mixture. Using a pH buffered extracting solvent was preferred to water or diluted acid solutions to improve the reproducibility of metals extraction with respect to existing leaching methods; the influence of pH, nature and concentration of the buffer solution and extraction time on analytes concentration in the extract is discussed. Values of ions extraction and elements recoveries resulted fairly equivalent with those obtained by the reference methods. The study was also extended to some non-certified elements (Mg, S, Sb, Si and Ti) for their environmental significance. Elements recoveries were obtained as sum of the extract and residue fractions and were comparable with those obtained by direct dissolution. Standard deviations were within 10% for almost all detected ions and elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.