Abstract

The object of the present study was to develop and validate an assay method of mesoridazine in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma samples from rats were prepared by simple protein precipitation and injected onto the LC-MS/MS system for quantification. Mesoridazine and chlorpromazine as an internal standard (IS) were separated by a reversed phase C18 column. A mobile phase was composed of 10mM ammonium formate in water and acetonitrile (ACN) (v/v) by a linear gradient system, increasing the percentage of ACN from 2% at 0.4min to 98% at 2.5min with 4min total run time. The ion transitions monitored in positive-ion mode [M+H](+) of multiple-reaction monitoring (MRM) were m/z 387>126 for mesoridazine and m/z 319>86 for IS. The detector response was specific and linear for mesoridazine at concentrations within the range 0.001-4μg/ml and the correlation coefficient (R(2)) was greater than 0.999 and the signal-to-noise ratios for the samples were ≥10. The intra- and inter-day precision and accuracy of the method were determined to be within the acceptance criteria for assay validation guidelines. The matrix effects were approximately 101 and 99.5% from rat plasma for mesoridazine and chlorpromazine, respectively. Mesoridazine was stable under various processing and/or handling conditions. Mesoridazine concentrations were readily measured in rat plasma samples after intravenous and oral administration. This assay method can be practically useful to the pharmacokinetic and/or toxicokinetic studies of mesoridazine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call