Abstract

Background: In the current study, a simple and cost-effective stability-indicating RP-HPLC method was developed and validated to estimate the mesalamine from both bulk and pharmaceutical dosage forms. Methods: An isocratic HPLC method using a reverse phase HiQSilC18 column (250 x 4.6 mm, 5μm) and a mobile phase methanol: ammonium acetate buffer (90:10 v/v) were employed as the mobile phase with a flow rate of 1 mL/min at 25°C. Detection was carried out at 305 nm, and the injection volume was 20μl. The developed method was validated as per ICH Q2 guidelines. Mesalamine has been subjected to various stress testing conditions, such as hydrolysis of acid and base, thermal degradation, oxidation, and photolysis. Also, methods have been validated with regard to linearity, accuracy, precision, and robustness. Results: The RT of mesalamine was determined to be 3.550 min ± 0.024 minutes, providing a reliable marker for its identification. The method was found to be linear between 5-30 μg/mL concentration with (R²) of 0.994. This demonstrated the method's ability to measure varying concentrations of mesalamine accurately. Additionally, the percentage recovery of mesalamine was approximately 100%, confirming the accuracy of the developed method. The parameters for system suitability have also been found to be within acceptable limits. Force degradation studies reinforced the method's selectivity and sensitivity in detecting mesalamine under various degradation scenarios. Notably, mesalamine significantly degraded in an acidic environment. Conclusion: In conclusion, our proposed RP-HPLC method provides a sensitive, accurate, and precise means of analyzing mesalamine in both bulk and pharmaceutical dosage forms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.