Abstract
Thanks to the low weight, magnesium alloys feature high specific strength and stiffness properties. Thus they prove to be promising materials for todays ambitious automotive light weight construction efforts. Due to their comparative low formability at room temperature the process of magnesium sheet hydroforming can be improved at temperatures higher than 200 °C by the activation of additional sliding planes. This paper illustrates the determination of mechanical properties for the hydroforming of magnesium sheets at elevated temperature. In particular the mechanical behavior at elevated temperature was investigated by means of the tensile test and of the hydraulic bulge test. For the determination of the strains an optical measurement system was introduced into the experimental set-up. The exact knowledge of the strain condition in the area of diffuse necking enabled the determination of the flow curve in the tensile test also beyond the uniform elongation. The influence of temperature and strain rate was analyzed as well as the influence of uni- and biaxial stress state on the flow curve. Using circular and elliptic dies with different aspect ratio the hydraulic bulge test served to determinate the forming limit curves at three different elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.