Abstract

A recently developed theoretical model represents the generalization of the indentation of a sphere into an infinite homogeneous halfspace to the problem of a Hertzian load acting on a halfspace covered with one or more films having different elastic properties. The model allows the analytical calculation of the complete elastic stress field and the deformations within the films and the substrate. Some results of the model shall be confirmed by nanoindentation experiments using an UMIS-2000 nanoindenter into Si 3N 4/SiO 2 and SiO 2/ Si 3N 4 double layers on BK7 glass and Si(100) single crystal. The materials used allow accurate measurements due to their homogeneous, amorphous structure as well as low surface and interface roughness. After the determination of the instrument compliance and the real, depth dependent indenter radius the measured load–depth data are compared with calculated results. It is shown that measurement results can be correctly interpreted by the model. The onset of plastic deformation is investigated for the same samples by multiple partial unloading experiments with a 4-μm radius diamond sphere. The critical load at which a first deviation from a wholly elastic response occurs is used for a stress calculation with the model. The mechanical behavior of the different film combinations is interpreted by means of the von Mises comparison stress. The measured results, together with the analytical modeling, allow an optimization of the thickness and modulus of the individual layers to get a maximum mechanical stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.