Abstract
AbstractSpectrophotometric titrations provide information about the interior of the polyamidoamine (PAMAM) dendrimers, and therefore how nanoparticles are encapsulated. In this work, binding studies were performed to determine maximum loading capacities (N) of hydroxyl terminated G4, G5, and G6 PAMAM dendrimers with Cu2+ ions. The values of N found via spectrophotometric titrations were 16.22, 31.86, and 57.36 for G4‐OH, G5‐OH, and G6‐OH, respectively. The determination of loading capacity was also done using Viva spin filtration, and the results were found to be in agreement with those found via spectrophotometric titrations. From the binding isotherm, the values of equilibrium constant (K′) were determined and found to be 0.0488 (G4‐OH), 0.0291 (G5‐OH), and 0.0158 (G6‐OH). Owing to instability of G4‐OH (Cu16), G5‐OH (Cu32), and G6‐OH (Cu57) dendrimer‐encapsulated nanoparticles (DENs) synthesized, G6‐OH (Cu55) DENs of average size 2.6 ± 0.3 nm were prepared and were found to be relatively stable. Thus G6‐OH (Cu55) catalyst was evaluated for the reduction of 4‐nitrophenol and was found to be catalytically active toward reduction of 4‐nitrophenol. Reaction kinetics of 4NP reduction was thoroughly studied in light of the Langmuir‐Hinshelwood kinetic model, and surface rate k, and the adsorption rates K4NP, and KBH4 were determined. The reaction was performed at different temperatures, which further expanded the study into determination of thermodynamic (ΔH‡, ΔS‡, ΔG‡, and EA) parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.