Abstract

This study presents a method for the experimental determination of local volumetric mass transfer coefficients kLaL in a high-pressure two-phase flow of water (H2O) and carbon dioxide (CO2) in a micro-capillary using Raman spectroscopy. H2O and CO2 are continuously and co-currently fed at high pressure (8, 9 and 10 MPa) and moderate temperature (303 K) into a fused silica micro-capillary. A segmented two-phase flow is obtained therein and the fraction of CO2 in the water-rich phase is measured in-situ at different points along the capillary using Raman spectroscopy. A modified Henry’s law is used to compute the equilibrium compositions of the water-rich phase at the desired pressure and temperature. A mixture density model is used to convert the fraction of CO2 in the water-rich phase into a CO2 concentration. The volumetric liquid mass transfer coefficient is computed at various axial locations along the capillary, from the contacting zone to the end of the capillary. Experimentally derived kLaL values range between 2.10−3 and 5.10−3 s−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.