Abstract

Evaporation of a droplet of pure water several micrometers in size was investigated. The droplet was levitated in an electrodynamic trap placed in a small climatic chamber. The evolution of the droplet and the evolution dynamics was studied by analyzing the coherent light scattering patterns with the aid of Mie theory. A numerical model of droplet evolution incorporating the kinetic effects near the droplet surface was constructed. By applying this model to the experimental data the mass and thermal accommodation coefficients were determined to be &alpha;<sub>C</sub>=0.12&plusmn;0.02 and &alpha;<sub>T</sub>= 0.65&plusmn;0.09. This model enabled to find the droplet temperature evolution and the relative humidity in the droplet vicinity with high precision as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.