Abstract

Analytical magnetapheresis is a newly developed technique for separating magnetically susceptible particles. The magnetically susceptible particles are deposited on a bottom plate after flowing through a thin (<0.05 cm) separation channel under a magnetic field applied perpendicular to the flow. Particles with various magnetic susceptibilities can be selectively deposited and separated by adjusting the applying magnetic force and flow rates. Magnetic susceptibility is an important parameter for magnetic separation. Magnetic susceptibility determination of various ion-labeled red blood cells (RBCs) using analytical magnetapheresis with a simple theoretical treatment is reported in this study. Susceptibility determination is based on the balance between maximal channel flow rate and magnetically induced flow rate for deposition. We tried a new approach to determine particle magnetic susceptibilities using a balance of magnetic and drag forces to control magnetically induced particle velocities. The Er 3+, Fe 3+, Cu 2+, Mn 2+, Co 2+, and Ni 2+ ions were used to label RBC at various labeling concentrations for susceptibility determination. The susceptibilities determined for various ion-labeled RBC under two magnetic field intensities fell within a 10% range. The average viabilities of various ion-labeled RBCs were 96.1±0.8%. The susceptibility determination generally took less than 10 min. Determined susceptibilities from analytical magnetapheresis differed by 10% from reference measurements using a superconducting quantum interference device (SQUID) magnetometer. The cost and time for analysis is much less using analytical magnetapheresis. This technique can provide a simple, fast, and economical way for particle susceptibility determinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.