Abstract

We studied magnetic anisotropic properties, interlayer coupling, and spin wave relaxation in ten periods of CoFeB/Cr/CoFeB films grown on seed layers of Cu with a Co:Fe:B composition ratio of 2:2:1. The measurements were taken in samples with 50 Å layers of CoFeB using the ferromagnetic resonance technique. The thickness of the Cr interlayers was varied from 4 to 40 Å for understanding the mechanisms of interlayer coupling. We investigated the magnetic anisotropy parameters by rotating the sample with respect to the microwave magnetic field from in plane to perpendicular to the plane. We identify both the acoustic branch and the optical branch in the spin wave resonance spectra. The effective interlayer coupling constant and the out-of-plane anisotropy show an oscillatory change, while the uniaxial in-plane anisotropy increases monotonically with increasing the thickness of the spacing layers. Moreover, we show that the spin wave relaxation can be optimized by adjusting the interlayer exchange interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call