Abstract

The extraordinary mechanical properties of high strength aluminum alloys such as AA7075-T6 are caused by coherent nanoprecipitations. These nanoprecipitations generate local stress fields and interact with moving dislocations and propagating microcracks. In this paper, image correlation techniques are used to determine the local strain and stress field in the vicinity of fatigue crack tips during the loading of compact tension (CT) specimen. The fatigue crack tip was sharpened with decreasing fatigue loading after fatigue cracks initial appearance. Images of the crack tip were taken using atomic force microscopy/ultrasonic force microscopy (AFM/UFM) and white light interference microscopy (WLIM) before and after mechanical loading of the specimen. Both techniques are applicable for measuring the out-of-plane displacement during the loading process. In addition, image correlation techniques can be used to determine the in-plane displacement resulting from mechanical loading. This information is used to calculate the local stress intensity factor in the vicinity of the crack tips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.