Abstract
A method is presented for determining the local magnitude, M_L, from records from seismoscopes and similar instruments. The technique extrapolates the maximum response of the standard Wood-Anderson seismograph, which determines M_L, from the maximum response of the seismoscope. The standard deviation of the steady-state response of an oscillator subjected to white noise excitation is used to derive a relation correcting for the different periods, dampings, and gains of the two instruments. The accuracy of the method is verified by application to data from the San Fernando and Parkfield earthquakes wherein both accelerograph and seismoscope records are available from the same sites. The accelerograms are used to synthesize Wood-Anderson responses whose maxima are compared to those extrapolated from the seismoscope data. In both earthquakes, the average magnitudes and standard deviations determined by the two approaches are very nearly equal. The method is then applied to the strong-motion data from the Managua, Nicaragua earthquake of December 23, 1972 (M_S = 6.2, mb = 5.6). A value of M_L = 6.2 is indicated from the seismoscope and accelerograph data. The next application is to the Guatemala earthquake of February 4, 1976 (M_S = 7.5, mb = 5.8). The only seismic instrumentation available for determining M_L is a seismoscope record from Guatemala City, which indicates M_L = 6.9 when a representative distance of about 35 km is used. As a final example, the records obtained during the 1906 San Francisco earthquake Formula from the Ewing duplex pendulum seismograph at Carson City, Nevada and the simple pendulum at Yountville, California are analyzed. After restoring the Carson City instrument, its period and damping were determined experimentally as were the period and damping of a similar instrument in the London Science Museum. On the basis of the strong-motion records from Carson City and Yountville, it is estimated that the local magnitude of the 1906 earthquake lies in the range Formula to 7. The use of seismoscope data further extends the instrumental base from which M_L can be determined and allows the rapid determination of M_L in earthquakes where seismoscope data are available. The applications in this study provide further instrumental evidence for the saturation of M_L in the 7 to Formula range, with the value of 7.2 for the Kern County earthquake of 1952, the largest so far determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.