Abstract

Transient conjugate heat transfer measurements under varying temperature and velocity inlet boundary conditions at incompressible flow conditions were performed for flat plate and ribbed channel geometries. Therefrom, local adiabatic wall temperatures and heat transfer coefficients were determined. The data were analyzed using typical heat transfer correlations, e.g., Nu=CRemPrn, determining the local distributions of C and m. It is shown that they are closely linked. A relationship lnC=A−mB is observed, with A and B as modeling parameters. They could be related to parameters in log-law or power-law representations for turbulent boundary layer flows. The parameter m is shown to have a close link to local pressure gradients and, therewith, near wall streamlines as well as friction factor distributions. A normalization of the C parameter allows one to derive a Reynolds analogy factor and, therefrom, local wall shear stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.