Abstract

Magnetic impurities in diamond influence the relaxation properties and thus limit the sensitivity of magnetic, electric, strain, and temperature sensors based on nitrogen-vacancy color centers. Diamond samples may exhibit significant spatial variations in the impurity concentrations hindering the quantitative analysis of relaxation pathways. Here, we present a local measurement technique which can be used to determine the concentration of various species of defects by utilizing double electron-electron resonance. This method will help to improve the understanding of the physics underlying spin relaxation and guide the development of diamond samples, as well as offering protocols for optimized sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call