Abstract

The current work presents a new test method to evaluate liquid metal embrittlement (LME) susceptibility of zinc-coated steels in arc processes under application-oriented conditions. The procedure is based on the programmable deformation cracking test (PVR test). The PVR test is a variation of a controlled tensile test for hot cracking investigations in arc welding processes. Two dual-phase steels (DP600, DP980) and five transformation-induced plasticity steels (TRIP690, TRIP700, TRIP700, TRIP1100, TRIP1200) were used. The investigations showed that comparable thermo-mechanical loading conditions can be guaranteed for materials of different sheet thicknesses in the PVR test through a targeted adjustment of the heat input per unit length of weld. Furthermore, it was shown that the critical deformation rate {v}_{cr} (used for assessing hot cracking susceptibility) may also be used to assess the LME susceptibility of a particular steel. Furthermore, another LME susceptibility parameter, the relative reduction in load-bearing ability DeltaSigma could be derived, which may be used to understand how LME cracking affects materials’ mechanical and fracture properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.