Abstract

An accurate, economic and green methodology for Pb(II) monitoring in bee products is proposed. Complexed metal traces were preconcentrated on Nylon membranes using the coacervation phenomenon based on room temperature reaction between the cationic surfactant hexadecyltrimethylammonium bromide and the bile salt sodium cholate. The increase in solid surface fluorescence signal of dyes 8-hydroxyquinoleine and o-phenanthroline due to Pb(II) presence was used for the metal quantification. Experimental variables that influence on preconcentration step and fluorimetric sensitivity were optimized using uni-varied assays. Pb(II) concentration was determined on membranes by solid surface fluorescence at λem = 470nm (λexc = 445nm), using a solid sample holder. The calibration at optimal experimental conditions showed a LOD of 4.2 × 10-4mg Kg-1 with a linear range of 1.28 × 10-3mg Kg-1 to 8.73mg Kg-1 and was successfully applied to Pb(II) quantification in different bee products produced in central west region of Argentina. The proposed methodology was applied to all samples after appropriate dilution. Accuracy methodology was evaluated by comparison of the obtained results with those found by ICP-MS, with percentage relative error under 8%. The precision was better than 0.0344 CV for Pb(II) determination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call