Abstract

A detection system based on Laser Induced Breakdown Spectroscopy (LIBS) was designed, optimized, and successfully employed for the estimation of lead (Pb) content in drilling fueled soil (DFS) collected from oil field drilling areas in Pakistan. The concentration of Pb was evaluated by the standard calibration curve method as well as by using an approach based on the integrated intensity of strongest emission of an element of interest. Remarkably, our investigation clearly demonstrated that the concentration of Pb in drilling fueled soil collected at the exact drilling site was greater than the safe permissible limits. Furthermore, the Pb concentration was observed to decline with increasing distance away from the specific drilling point. Analytical determinations were carried out under the assumptions that laser generated plasma was optically thin and in local thermodynamic equilibrium (LTE). In order to improve the sensitivity of our LIBS detection system, various parametric dependence studies were performed. To further validate the precision of our LIBS results, the concentration of Pb present in the acquired samples were also quantified via a standard analytical tool like inductively coupled plasma/optical emission spectroscopy (ICP/OES). Both results were in excellent agreement, implying remarkable reliability for the LIBS data. Furthermore, the Limit of detection (LOD) of our LIBS system for Pb was estimated to be 125.14 mg L−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.