Abstract
Lead, Cr, Mn and Zn in slurries of botanic and biological samples were determined by electrothermal atomic absorption spectrometry (ETAAS) using W, Ir, NH4H2PO4, W and NH4H2PO4, Ir and NH4H2PO4, W and Ir, and W + Ir + NH4H2PO4 chemical modifiers in an 0.2% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture. Zeeman effect background correction was performed and platforms inserted into graphite tubes were used. Comprehensive comparative studies were carried out with respect to pyrolysis and atomization temperatures, atomization and background absorption profiles, characteristic masses, detection limits and accuracy of the determinations in the presence and absence of modifiers. The mixture of W + Ir + NH4H2PO4 was found to be preferable for the determination of Pb, Cr, Mn and Zn in slurry samples. The pyrolysis temperatures of the analytes were increased up to 1250 °C for Pb, 1000 °C for Zn, 1400 °C for Cr and Mn by using W + Ir + NH4H2PO4 with an 0.2% (v/v) Triton X-100 plus 0.2% (v/v) nitric acid mixture used as diluent solution. The optimum masses of the mixed modifier components were found to be 20 µg W + 4 µg Ir + 50 µg NH4H2PO4. The characteristic masses of Pb, Cr, Mn and Zn obtained are 16.3, 5.6, 0.1 and 1.1 pg, respectively. The detection limits of Pb, Cr, Mn and Zn based on integrated absorbance for 0.5% (m v−1) slurries were found to be 0.14, 0.06, 0.02 and 0.01 µg g−1, respectively. The slurries of botanic and biological certified and standard reference materials were analyzed with and without the modifiers. Depending on the sample type, the percent recoveries increased from 63 up to 104% for analytes when using the proposed modifier mixture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.