Abstract
A theoretical and experimental approach for extraction of guided wave dispersion data in plate structures is described. Finite element modeling is used to calculate the surface displacement data (in-plane and out-of-plane) when the plate is subject to either symmetrical or antisymmetrical impulsive force stimulation at one or both of the parallel faces. Fourier transformation of the resultant space-time displacement histories is then employed to obtain phase velocity as a function of frequency. Experimental verification in the case of antisymmetrical stimulation is provided by means of a high-power Q-switched laser source that is used to excite guided waves in the plate. The subsequent out-of-plane displacement data were then obtained by means of a scanning laser vibrometer, and good agreement between theory and experiment is demonstrated. Examples of dispersion data are provided for aluminum, and excellent correlation between the data sets and conventional Rayleigh-Lamb theory for plate structures was obtained. This was then extended to lossy polymeric plates, in addition to both unpolarized and polarized piezoelectric ceramic plates, again with good agreement between the finite element modeling and optical experiments. The last set of results prepares the way for a detailed investigation of the nonhomogeneous piezoelectric composite waveguides described in a companion paper (Part II).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.