Abstract

The chemical relaxation times of two different two-step equilibrium reactions, characterized by a 1:1 binding process followed by a subsequent rearrangement step and a stepwise 1:2 binding reaction, are analyzed for the purpose of qualitative model discrimination and quantitative determination of kinetic parameters. The equations describing the dependences of the two reciprocal relaxation times on suitable concentrations are given for both models in the general case as well as for four different limiting situations which are characterized by well separated relaxation times. The conditions corresponding to the limiting cases are expressed in terms of strong, weak and no coupling between the two partial equilibrium steps involved in both models. The coupling strength depends on the rate constants as well as on the total concentrations of the reactants. Criteria to discriminate between these two reaction models under defined limiting conditions are developed. In the general case, the product of both reciprocal relaxation times can be used to distinguish both models. If only one relaxation time can be resolved experimentally, it is possible under conditions described to determine only a reduced set of individual rate constants for most of the limiting cases considered. If both relaxation times are observed, all rate constants are determinable in the general case as well as in most of the limiting cases discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.