Abstract

In this study, the decomposition of five different raw materials (maize, wheat and piney biomass, industrial wood chips and sunflower husk) were investigated using the TG-FTIR method to obtain raw data for model-based calculations. The data obtained from the thermogravimetric analysis served as a basis for kinetic analysis with three different isoconversional, model-free methods, which were the KAS, FWO and Friedman methods. Afterwards, the activation energy and the pre-exponential factor were determined, and no significant difference could be identified among the used methods (difference was under 5%), achieving 203–270 kJ/mol of Ea on average. Thereafter, the thermodynamic parameters were studied. Based on the TG-FTIR data, a logistic regression model was fitted to the data, which gives information about the thermal degradation and the obtained components with different heating rates. The FTIR analysis resulted in differential peaks corresponding to the studied components that were detected within the temperature range of 350–380 °C. The primary degradation processes occurred within a broader temperature range of 200–600 °C. Accordingly, in this work, the use of logistic mixture models as an alternative to traditional kinetic models for the description of the TGA process was also investigated, reaching adequate performance in fitting by a validation data coefficient of determination of R2 = 0.9988.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.