Abstract

The purpose of this work was to determine percentage depth dose (PDD) curves for kilovoltage x-rays from the WOmed-T105 unit, with open-ended steel applicators and beam qualities ranging from 0.5 to 4.2mm Al. Measurements were made with parallel plate chambers in a water phantom, with extrapolation based on a fifth order polynomial used to estimate the surface dose. Measurements were also made with parallel plate chambers in a plastic water phantom, with thin plastic sheets used to obtain detailed measurements at shallow depths (less than 1mm). Monte Carlo simulations were performed using the EGSnrc package, with two different sources as input: a SpekPy simulation of the x-ray beam and a full simulation of the x-ray tube, treatment head and applicators. Results showed that all four methods (two measurements and two simulations) agreed within the measurement uncertainty at depths greater than 2mm. At shallow depths, significant differences were noted. At depths less than 0.1mm, the full Monte Carlo simulation and the solid water measurements showed a sharp spike in surface dose which is attributed to electron contamination, which was not seen in the SpekPy Monte Carlo simulation or the extrapolated water measurements. At depths between 0.1mm and 2mm, beyond the range of contaminant electrons, the extrapolated water measurements underestimate the dose by up to 13% compared to the full Monte Carlo simulation and the solid water measurements, attributed to fluorescent photons generated in the applicators. This work demonstrates that for open-ended applicators, measurement of depth doses in water with extrapolation of surface dose has the potential to significantly underestimate the dose at shallow depths between the surface and 2mm, even after eliminating electron contamination from the beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.