Abstract
Dispersing micro and nanoparticles into polymeric materials has proven to induce multifunctional properties in polymer composites, including their magnetic, electrical, thermal and mechanical characteristics. Adding carbon-based nanoparticle inclusions such as Graphene Nano-Platelets (GNP) to polymeric materials typically leads to thermal, electrical and mechanical property enhancements. Raising thermal conductivity by adding highly thermally conductive fillers particularly harbors great potential given diverse possible applications, such as in the electronics industry. In this study, the focus is on increasing the thermal conductivity of an epoxy by dispersing GNP in the pre-polymer. The influence of various process parameters such as filler loading, influence of swelling, use of solvent and additives, sonication time and amplitude, as well as curing cycle were determined. By means of a Design of Experiments approach the parameters which have the greatest effect on thermal conductivity enhancement were identified. Through this study a better understanding of the influence of process parameters was achieved in a qualitative and quantitative manner. The study further aids in selecting ideal process parameters for maximum thermal conductivity enhancements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.