Abstract

Abstract In this study, Johnson-Cook fracture strain model considering the effect of stress triaxiality and strain rate is determined for austenitic stainless steel 304. Tensile test data of four different stress triaxiality and six different strain rate conditions are used to determine the parameters in the J-C fracture strain model. To see the effect of local variation of stress triaxiality and strain rate in the specimen, the J-C fracture models are determined in two different ways. The first case uses the initial stress triaxiality and nominal strain rate, and the second case uses the average value of local stress triaxiality and strain rate obtained from finite element analysis. The use of initial stress triaxiality gives conservative estimate of fracture strain at low stress triaxiality, and non-conservative estimate at high stress triaxiality. The use of nominal strain rate gives overall conservative estimate of fracture strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call