Abstract
AbstractIonic diffusion coefficients in the membrane are needed for the modelling of ion transport in ion‐exchange membranes (IEMs) with the Nernst‐Planck equation. We have determined the ionic diffusion coefficients of Na+, OH−, H+, Cl−, SO42−, NaSO4−, and HSO4− from the diffusion experiments of dilute NaCl, NaOH, HCl, Na2SO4, and H2SO4 solutions through IEMs and the membrane conductivity measured in these solutions, using electrochemical impedance spectroscopy. The order of diffusion fluxes across the anion‐exchange membrane is found to be as H2SO4>HCl>NaCl>Na2SO4>NaOH, whereas for the cation‐exchange membrane it was NaOH>NaCl>Na2SO4≥H2SO4. Special attention is given to sulfates because of the partial dissociation of bisulfate and NaSO4−, which makes the use of the Nernst‐Hartley equation, that is, splitting the electrolyte diffusion coefficient into its ionic contributions, impossible. The expression of the diffusion coefficient of sulfates taking into account the dissociation equilibrium has been derived and the corresponding Fick equation has been integrated. In addition, for sulfates, finite element simulations with COMSOL Multiphysics, applying a homogeneous membrane model, were done to give estimates of their ionic diffusion coefficients. This work offers a convenient approach to finding diffusion coefficients of various ions inside IEMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.