Abstract

Abstract Impedance spectroscopy measurements in various gas atmospheres were carried out in order to explain the doubts about the type of carriers and the mechanism of electrical conductivity in Bi-Si-O and Pb-Si-O glasses. In bismuth silicate glass, a typical ionic conductivity with oxygen ions as charge carriers was observed. The level of electrical conductivity of the glass at 400 °C was 5 × 10-8 S·cm-1, with the activation energy of 1.3 eV and was independent of measuring atmosphere. In the case of lead silicate glasses, the conductivity changed with measuring atmosphere. Two types of charge carriers: oxygen ions and proton ions were postulated. Proton conductivity measured in wet argon at temperature 400 °C was estimated at the level of 4 × 10-8 S·cm-1 while the oxygen ions conductivity in such conditions was 78 × 10-8 S·cm-1. We suggest that both types of charge carriers are transported along the same conduction paths using oxygen defects in the glass structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.