Abstract
The dissolved iodine species that dominate aquatic systems are iodide, iodate and organo-iodine. These species may undergo transformation to one another and thus affect the formation of iodinated disinfection byproducts during disinfection of drinking waters or wastewater effluents. In this study, a fast, sensitive and accurate method for determining these iodine species in waters was developed by derivatizing iodide and iodate to organic iodine and measuring organic iodine with a total organic iodine (TOI) measurement approach. Within this method, organo-iodine was determined directly by TOI measurement; iodide was oxidized by monochloramine to hypoiodous acid and then hypoiodous acid reacted with phenol to form organic iodine, which was determined by TOI measurement; iodate was reduced by ascorbic acid to iodide and then determined as iodide. The quantitation limit of organo-iodine or sum of organo-iodine and iodide or sum of organo-iodine, iodide and iodate was 5 μg/L as I for a 40 mL water sample (or 2.5 μg/L as I for an 80 mL water sample, or 1.25 μg/L as I for a 160 mL water sample). This method was successfully applied to the determination of iodide, iodate and organo-iodine in a variety of water samples, including tap water, seawater, urine and wastewater. The recoveries of iodide, iodate and organo-iodine were 91–109%, 90–108% and 91–108%, respectively. The concentrations and distributions of iodine species in different water samples were obtained and compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.