Abstract
Fludarabine is a nucleoside analog routinely used in conditioning regimens of pediatric allogeneic stem cell transplantation to promote stem cell engraftment. In children, it remains a challenge to accurately and precisely quantify the active intracellular triphosphate species of fludarabine in vivo, primarily due to limitations on blood volume and inadequate assay sensitivity. Here we report a liquid chromatography tandem mass spectrometry (LC–MS/MS) method for determination of fludarabine triphosphate in human peripheral blood mononuclear cells (PBMC). PBMC (∼5 million cells) were collected and lysed in 1mL 70% methanol containing 1.2mM tris buffer (pH 7.4). The lysate (80μL) was mixed with internal standard (2-chloro-adenosine triphosphate, 150ng/mL, 20μL) and injected onto an API5000 LC–MS/MS system. Separation was achieved on a hypercarb column (100mm×2.1mm, 3μm) eluted with 100mM ammonium acetate (pH 9.8) and acetonitrile in a gradient mode at a flow rate of 0.4mL/min. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI−) were used for detection. The ion pairs 524.0/158.6 for the drug and 540.0/158.8 for the IS were selected for quantification and 524.0/425.7 used for confirmation. Retention time was 3.0 and 3.4min for fludarabine triphosphate and the IS, respectively. The concentration range for the calibration curve was 1.52–76nM. Our method is simple, fast, and has been successfully applied in a clinical dose–concentration study in children to quantify intracellular fludarabine in low volume clinical samples. The median concentration was 1.03 and 3.19pmole/million PBMC at trough and peak time points, respectively. Fludarabine triphosphate is degraded in water within hours but relatively stable in 70% methanol–tris (1.2mM, pH 7.4). One limitation is that the hypercarb column takes a longer time to equilibrate than conventional reverse phase columns, and peaks become broad and distorted if the column is not washed and stored properly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.