Abstract

To demonstrate the feasibility of using multidetector computed tomography with gadolinium contrast (Gd-MDCT) for the quantification of myocardial infarct (MI). MI was induced in male swine (n = 6). One week later, the animals received 0.2-mmol/kg gadopentetate dimeglumine and were sacrificed. On the excised hearts, Gd-MDCT with several tube voltages (80, 120, and 140 kV), late gadolinium enhancement MRI (LGE-MRI), and triphenyl-tetrazolium-chloride staining were then conducted. We used a 2-SD threshold for the CT images and several threshold limits (2, 3, 4, 5, 6 SD, and full width at half-maximum [FWHM]) for the LGE-MRI images to delineate the infarct area. Total infarct volume and infarct fraction of each heart were calculated. MI size measured by MDCT at 140 kV showed good correlation with the reference triphenyl-tetrazolium-chloride value. Applying an 80-kV tube voltage, however, significantly underestimated MI size. In our study, the LGE-MRI method, using the 6-SD threshold, provided the most accurate determination of MI size. LGE-MRI, using the 2- and 3-SD threshold limits, significantly overestimated infarct size. The Gd-MDCT technique has been found suitable for the evaluation of MI in an ex vivo experimental setting. Gd-MDCT has the ability to detect MI even at low kV settings, but accuracy is limited by a high image noise because of reduced photon flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call