Abstract

In this study, the determination of equivalent circuit parameters of induction motors is carried out with differential evolution algorithm (DEA) and genetic algorithm (GA). As an objective function in the algorithms, the sum torque error at zero speed, pull-out, and rated speed is used. The determination of equivalent circuit parameters is performed with three induction motors of 2.2, 5.5, and 37 kW. In particular, the search ability of DEA is compared with GA by using the same population size, number of iteration, and crossover rate. In addition, the effects of the obtained equivalent circuit parameters on induction motors characteristics are investigated and presented with graphics. The results show that the use of DEA instead of GA increases the convergence sensitivity and reduces the simulation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.