Abstract

Advanced oxidation processes (AOP) are commonly used to treat contaminated groundwaters for a variety of synthetic organic chemicals (SOCs), including those contaminated with fuel oxygenates. To facilitate modeling oxygenate removal with advanced oxidation processes, kinetic rate constants are needed for hydroxyl radicals and specific oxygenates. In this work, hydroxyl radical rate constants were determined for a suite of fuel oxygenates and byproducts—methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), diisopropyl ether (DIPE), tert-butyl formate (TBF), and tert-butyl alcohol (TBA)—using a uniform methodology. Rate constants were determined with the competitive kinetic technique using para-chlorobenzoic acid (pCBA) as the radical probe and the UV/hydrogen peroxide AOP for radical generation. The second-order rate constants determined for MTBE, ETBE, TAME, DIPE, TBF, and TBA were 1.27 (±0.04) (109), 2.46 (±0.8) (109), 2.80 (±0.2) (109), 3.01 (±0.06) (109), 5.6 (±0.8) (108), and 7.3 (±0.2) (108) M−1·s−1, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.