Abstract

A new copper dispersed ceramic-graphite composite electrode was fabricated by the initial mixing of copper nitrate and (3-mercaptopropyl)trimethoxy silane (MPS) followed by stirring with graphite powder. The combination of the metal catalysis and the advantages of the ceramic composite favored the electrocatalytic reduction of hydrogen peroxide (H2O2) at a reduced overpotential of -0.2 V with good sensitivity, stability and reproducibility. The sensor showed a good linear response to H2O2 in the range from 8.3 x 10(-6) M to 2.0 x 10(-3) M with a correlation coefficient of 0.9989 and the detection limit was 6.2 x 10(-6) M (S/N =3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.