Abstract

Precise orbits of the Global Positioning System (GPS) satellites are fundamental constituents of GPS-based space geodesy. Accurate baseline estimates with a precision of one to a few parts in 108 are essential to the study of Earth's dynamics problems. As a by-product of trajectory estimation, high resolution Earth Rotation Parameters (ERPs) can also be determined. A new application of triple differencing for efficient evaluation of GPS orbits in a PC environment is presented here. Initial tests show that this approach is capable of providing orbits that are highly compatible with the results obtained by the International GPS Service for Geodynamics (IGS). This approach allows for completely automated data processing without the overhead of working with very large normal matrices or cycle-slip fixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.