Abstract

Reaction kinetics is fundamental for modelling the thermal oxidation of a solid phase, in processes such as dust explosions, combustion or gasification. The methodology followed in this study consists in i) the experimental identification of the reaction mechanisms involved in the explosion of organic powders, ii) the proposal of simplified mechanisms of pyrolysis and oxidation, iii) the implementation of the model to assess the explosion severity of organic dusts. Flash pyrolysis and combustion experiments were carried out on starch (22 μm) and cellulose (53 μm) at temperatures ranging from 973 K to 1173 K. The gases generated were collected and analyzed by gas chromatography. In this paper, a semi-global pyrolysis model was developed for reactive systems with low Damköhler number. It is in good agreement with the experimental data and shows that both carbon monoxide and hydrogen are mainly generated during the pyrolysis of the solid, the generation of the latter compound being greatly promoted at high temperature. A simplified combustion model was also proposed by adding two oxidation reactions of the pyrolysis products. In parallel, flame propagation tests were performed in a semi open tube in order to assess the burning velocity of such compounds. The laminar burning velocity of cellulose was determined to be 21 cm s−1. Finally, this model will be integrated to a predictive model of dust explosions and its validation will be based on experimental data obtained using the 20 L explosion sphere. The explosion severity of cellulose was determined and will be used to develop and adjust the predictive model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.