Abstract

A solid phase collection/concentration method using anion exchanger filters and a small syringe packed with chelating resin fibers is adopted as a preconcentration tool for trace elements and a separation tool for matrices in aqueous samples prior to the measurement by inductively coupled plasma-mass spectrometry (ICP-MS). The effects of fiber volume, sample volume, eluent volume, and sample flow rate on metal recoveries were investigated in detail to obtain optimum pretreatment conditions. Several heavy metals (HMs) such as, V, Mn, Co, Ni, Cu, Zn, Ga, Cd, Pb, Th and U, as well as 14 rare earth elements (REEs) in sample solutions at pH 6 were quantitatively collected on the solid phase. These adsorbed elements were completely recovered by eluting with 2 ml of 1.0 M nitric acid. At pH 6, more than 99% of alkali and alkaline earth metals in sample solutions were eliminated. The proposed method was evaluated by analyzing two standard reference materials (SRM): peach leaves (NIST 1547) and pond sediment (NIES No. 2). The solid samples were decomposed by microwave-heating and pressurizing acid digestion technique, and then treated by the proposed syringe-type pretreatment method, followed by the ICP-MS measurement. The analytical results for HMs in the SRMs obtained by the present method agreed well with the certified values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.