Abstract

Currently, construction professionals can easily determine the amount of cut and fill on a mass excavation project, but can only make an educated and intuitive guess as to the required minimum haul distances and the directions to move the earth. This paper develops a mathematical optimization model for the determination of these minimum haul distances and directions. The two-dimensional model presented uses linear programming. An example of how this generic model works is detailed in this paper. Necessary inputs are the cut and fill quantities and the location of these on the site. With this mathematical model, the quantity of earth hauled, the minimum haul distances, and the locations to haul the material are determined. The solution is then made into a vector diagram detailing the quantity and direction to move material that can be used by nontechnical personnel in the field. The formulation presented in this paper will assist construction professionals by providing a method to find an optimal solution to the mass earthmoving problem. A pilot user interface is tested to investigate the possible use of an automated input system to reduce input error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.