Abstract

In order to realize rapid and non-destructive detection of hardness for maize kernels, a method for quantitative hardness measurement was proposed based on hyperspectral imaging technology. Firstly, the regression model of hardness and moisture content was established. Then, based on reflectance hyperspectral imaging at wavelengths within 399.75–1005.80 nm, the prediction model of the moisture content was studied by the partial least squares regression (PLSR) based on the characteristic wavelengths, which was selected through successive projection algorithm (SPA). Finally, the hardness prediction model was validated by combing the prediction model of moisture content with the regression model of hardness. The coefficient of determination (R2), the root mean square error (RMSE) the ratio of performance-to-deviation (RPD) and the ratio of error range (RER) of hardness prediction were 0.912, 17.76 MPa, 3.41 and 14, respectively. Therefore, this study provided a method for rapid and non-destructive detection of hardness of maize kernels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.