Abstract
Pathogenic bacteria have evolved the ability to evade their host defenses and cause diseases. Virulence factors encompass a wide range of adaptations that allow pathogens to survive and proliferate in the hostile host environment during successful infection. In human pathogenic Yersinia species, the potent type III secretion system (T3SS) and other essential virulence factors are encoded on a virulence plasmid. Here, we investigated the bacterial growth rate and plasmid copy number following a Yersinia infection using droplet digital PCR (ddPCR). ddPCR is an exceptionally sensitive, highly precise, and cost-efficient method. It enables precise quantification even from very small amounts of target DNA. This method also enables analysis of complex samples with large amounts of interfering DNA, such as infected tissues or microbiome studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.