Abstract

Prions of the baker's yeast Saccharomyces cerevisiae allow for the inheritance of complex traits based solely on the acquisition of cytoplasmic protein aggregates and confer distinctive phenotypes to the cells which harbor them, creating heterogeneity within an otherwise clonal cell population. These phenotypes typically arise from a loss-of-function of the prion-forming protein that is unable to perform its normal cellular function(s) while sequestered in prion amyloid aggregates, but the specific biochemical consequences of prion infection are poorly understood. To begin to address this issue, we initiated a direct investigation into the potential control that yeast prions exert over fungal lipid content by utilizing the prions [URE3] and [PSI+], the first two prions discovered in yeast. We utilized silica gel high-performance thin-layer chromatography (HPTLC)-densitometry to conduct pair-wise quantifications of the relative levels of free sterols, free fatty acids, and triacylglycerols [petroleum ether-diethyl ether-acetic acid (80:20:1) mobile phase, phosphomolybdic acid (PMA) detection reagent]; steryl esters and squalene (hexane-petroleum ether-diethyl ether-acetic acid (50:20;5:1), PMA]; and phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol (chloroform-diethyl ether-acetic acid (65:25:4.5), cupric sulfate-phosphoric acid) in otherwise clonal prion-infected ([PSI+] or [URE3]) and prion-free ([psi-] or [ure-o]) cells in two growth phases: log-phase and stationary phase. Our analysis revealed multiple statistically significant differences (p < 0.00625) between prion-infected and prion-free cells. Interestingly, prion-induced changes varied dramatically by growth phase, indicating that prions exert differential influences on cell physiology between log and stationary growth. Further experimental replication and extension of the analysis to other prions is expected to resolve additional physiological effects of prion infection. This investigation demonstrates that HPTLC-densitometry is an effective method for studying prion-induced alterations in lipid content in yeast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.