Abstract

AbstractGroundwater is a vital natural resource for agricultural, domestic and industrial uses. Understanding the spatial distribution of groundwater resources is critical to improving the relationship between water, food and energy. This article uses GIS and remote sensing and the analytical hierarchy process (AHP) technique to map the potential groundwater zones in the Lupane district. Lineaments, drainage density, slope, soil type, geology and land use land cover (LULC) were used to create thematic maps in ArcMap. The thematic maps were weighted and ranked according to their influence on the movement and occurrence of groundwater. To validate the groundwater potential zones (GWPZs) model, we used LULC and 675 perennial and seasonal boreholes in the Lupane district. The LULC and borehole maps were overlaid on the modelled GWPZ map to highlight their distribution. The GWPZ results show that areas with good potential make up the majority of the district (41%), followed by areas with moderate potential (30%), poor potential (14%), very good potential (13%) and very poor potential (2%). The results showed that 74% (499) of perennial boreholes overlapped the zones with good, moderate and/or very good groundwater potential. The GWPZ map can therefore be used as a preliminary reference when selecting suitable sites for the exploitation of groundwater resources. Further testing of the model using both seasonal and year‐round yields and depths from boreholes is recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call