Abstract

The electrical conductivity of Ce0.90Gd0.10O1.95 oxide ion conductor is studied, emphasizing distribution function of relaxation times (DFRT) analysis of impedance spectroscopy measurements. The corresponding powder has been prepared by co-precipitation method and sintered at 1300 °C. The formation of the fluorite phase is confirmed by X-ray diffraction. The temperature dependence of ionic conductivity has been studied at different bias voltages. The impedance spectra are analysed by impedance spectroscopy genetic programming (ISGP) that finds an analytic form of the DFRT. Interestingly, both the grain and grain boundary conductivities can be identified at room temperature by analysing the DFRTs. At higher temperatures and higher bias voltages, the grain boundary diffusion process of oxygen ions is identified. Both the grain and grain boundary activation energies are bias independent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.