Abstract

A portable short-wavelength infrared microscope hyperspectral imager (SMHI) combined with machine learning algorithms for the purpose of classifying geographical origins as well as root types of Lindera aggregata is developed. The spectral range of the SMHI system is 1090–1820 nm (5500–9100 cm-1) with spectral and spatial resolutions of 4 nm and 27.3 μm, respectively. Utilizing PCA-RF algorithms, the geographic origin of tuberous roots and leaves from five different origins were classified with accuracies of 97.5% and 97.8%, respectively. In addition, spatial identification of tuberous root and taproot tubers in a mixed sample was done with an accuracy of 98.98%. The accuracy of origin classification and spatial identification are high enough which indicate the significant potential of applying SMHI system into the non-invasive spatial mapping and rapid quality assessment of medicinal herbs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call