Abstract

BackgroundWe have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages (high and low groups), including FCGR2B, CENPE, RETSAT, ACSBG2, NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups. In this study, the purpose was to further examine whether these candidates have significant genetic effects on milk protein and fat traits.ResultsWith PCR product sequencing, 13 indels identified by whole genome resequencing were successfully genotyped. With association analysis in 769 Chinese Holstein cows, we found that the indel in FCGR2B was significantly associated with milk yield, protein yield and protein percentage (P = 0.0041 to 0.0297); five indels in CENPE and one indel in MAP3K1 were markedly relevant to milk yield, fat yield and protein yield (P < 0.0001 to 0.0073); polymorphism in RETSAT was evidently associated with milk yield, fat yield, protein yield and protein percentage (P = 0.0001 to 0.0237); variant in ACSBG2 affected fat yield and protein percentage (P = 0.0088 and 0.0052); one indel in TBC1D1 was with respect to fat percentage and protein percentage (P = 0.0224 and 0.0209). Significant associations were shown between indels in NLK and protein yield and protein percentage (P = 0.0012 to 0.0257); variant in UGDH was related to the milk yield (P = 0.0312). The two exonic indels in FCGR2B and CENPE were predicted to change the mRNA and protein secondary structures, and resulted in the corresponding protein dysfunction.ConclusionOur findings presented here provide the first evidence for the associations of eight functional genes with milk yield and composition traits in dairy cattle.

Highlights

  • We have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages, including FCGR2B, Centromere protein E (CENPE), RETSAT, Acyl-CoA synthetase bubblegum family member 2 (ACSBG2), NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups

  • Backgroud In dairy cattle, milk yield and milk composition traits are the most important economic traits, which are controlled by numerous environmental factors and genes [1,2,3,4]

  • In our previous whole genome resequencing study, we identified over 0.9 million short indels and 3625 common differential indels with the same allelic distribution directions based on the 8 Holstein bulls with extremely high or low estimated breeding values (EBVs) of milk protein and fat percentages [21]

Read more

Summary

Introduction

We have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages (high and low groups), including FCGR2B, CENPE, RETSAT, ACSBG2, NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups. The purpose was to further examine whether these candidates have significant genetic effects on milk protein and fat traits

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.