Abstract
This work presents a fundamental theory and methods for understanding the gas composition dynamics in PEMFC anode fuel supply compartments operated dead-ended with recirculation. The methods are applied to measurement data obtained from a PEMFC system operated with a 1 kW short stack.We show how fuel utilisation and stack efficiency, two key factors determining how well a fuel supply system performs, are coupled through the anode gas composition.The developed methods allow determination of the anode fuel supply molar balance, giving access to the membrane crossover rates and the extent of recirculated gas exchanged to fresh fuel during a purge. A methane tracer gas is also evaluated for estimating fuel impurity enrichment ratios.The above theory and methods may be applied in modelling and experimental research activities related to defining hydrogen fuel quality standards, as well as for developing more efficient and robust PEMFC system operation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.