Abstract

The alignment of the highest occupied molecular orbitals (HOMO) at the tris (8-hydroxy quinoline) aluminum (Alq3)/N,N′-di-(3-methylphenyl)-N,N′diphenyl-4,4′-diaminobiphenyl (TPD) heterojunction, used in organic light-emitting diodes (OLED), was determined by growing a TPD layer in several steps on a thick Alq3 substrate layer. After each growth step the sample was characterized in situ by x-ray and ultraviolet photoemission spectroscopy. The offset of the HOMO maxima at the interface was determined to be −0.13 eV from Alq3 to TPD. By including the known HOMO–lowest occupied molecular orbital (LUMO) gaps for both molecules into the evaluation, the offset of the LUMO minima was determined to be −0.33 eV from Alq3 to TPD. These values are consistent with previous assumptions that this interface represents a higher barrier for electron injection from Alq3 to TPD than for hole injection from TPD to Alq3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.