Abstract

BackgroundAssessing the accuracy of influenza epidemic periods determined by statistical models is important to improve the performance of algorithms used in real-time syndromic surveillance systems. This is a difficult problem to address in the absence of a reliable gold standard. The objective of this study is to establish an expert-based determination of the start and the end of influenza epidemics in France.MethodsA three-round international web-based Delphi survey was proposed to 288 eligible influenza experts. Fifty-seven (20%) experts completed the three-rounds of the study. The experts were invited to indicate the starting and the ending week of influenza epidemics, on 32 time-series graphs of influenza seasons drawn using data from the French Sentinelles Network (Influenza-like illness incidence rates) and virological data from the WHO-FluNet. Twenty-six of 32 time-series graphs proposed corresponded to each of the French influenza seasons observed between 1985 and 2011. Six influenza seasons were proposed twice at each round to measure variation among expert responses.ResultsWe obtained consensual results for 88% (23/26) of the epidemic periods. In two or three rounds (depending on the season) answers gathered around modes, and the internal control demonstrated a good reproducibility of the answers. Virological data did not appear to have a significant impact on the answers or the level of consensus, except for a season with a major mismatch between virological and incidence data timings.ConclusionsThanks to this international web-based Delphi survey, we obtained reproducible, stable and consensual results for the majority of the French influenza epidemic curves analysed. The detailed curves together with the estimates from the Delphi study could be a helpful tool for assessing the performance of statistical outbreak detection methods, in order to optimize them.

Highlights

  • Assessing the accuracy of influenza epidemic periods determined by statistical models is important to improve the performance of algorithms used in real-time syndromic surveillance systems

  • Our objective is to address this absence of a gold standard by establishing an expert-based determination of influenza epidemic periods through a Delphi process [11]

  • A graph was not to be presented at the round if the answers collected at a given round were stable, as compared to the previous round answers. We considered that such stability was reached whenever at least 75% of the experts had not moved the dates of the beginning and the end of the epidemic period by more than one week

Read more

Summary

Introduction

Assessing the accuracy of influenza epidemic periods determined by statistical models is important to improve the performance of algorithms used in real-time syndromic surveillance systems. This is a difficult problem to address in the absence of a reliable gold standard. Page=database) [3,4], like other surveillance systems [5,6,7], uses an approach based on a seasonal regression model proposed by Serfling for influenza outbreak monitoring [8] Under this model, influenza-like illness (ILI) incidence rates from non-epidemic weeks in the previous years are used to compute a time-varying threshold.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.